Her ne kadar Newton'un ikinci yasası şeklinde ifade edilse de, momentumun korunumu Özel görelik teorisi çerçevesi içinde de geçerlidir ve bazı uygun tanımlarla birlikte, (genelleştirilmiş) bir momentum korunum yasası Elektrodinamik, kuantum mekaniği, kuantum alan teorisi ve genel görelik teorileri içinde de geçerliliğini korur. Göreli mekanikteki momentum, göreli-olmayan momentumun, fazladan Lorentz faktörü ile çarpılmasıyla elde edilir
Bir parçacığın çizgisel momentumu
Bir nesne herhangi bir gözlem çerçevesinde hareket halinde ise, o çerçeve içinde bir momentuma sahiptir. Momentumun çerçeve bağımlı olduğunu belirtmek önemlidir. Yani aynı nesne, bir gözlem çerçevesinde belli bir momentum değerine sahip olabilirken, başka bir gözlem çerçevesinde ise başka bir momentum değerine sahip olabilir. Örneğin, hareketli bir nesne, yere göre sabit bir noktaya göre seçilen bir gözlem çerçevesinde momentumu olmasına rağmen, kütle merkezine iliştirilen bir gözlem çerçevesinde ise sıfır momentumu vardır.Bir nesnenin sahip olduğu momentumun miktarı, iki fiziksel büyüklüğe bağlıdır: Kütlesi ve o gözlem çerçevesindeki hızı. Fizikte, momentum için kullanılan sembol genellikle kalın p harfidir (kalın yazılmasının nedeni vektör olmasındandır.); böylece şöyle ifade edilebilir;
Örnek: kuzeye doğru yere paralel düz bir rotada 1 m/s hızına ve 1 kg kütleye sahip model bir uçağın momentumu yere göre ölçüldüğünde, kuzey yönünde 1 kg•m/s ‘dir. Kokpitin içindeki bir pilot, kokpit gözlem çerçevesine göre uçağın hızını sıfır ölçeceğinden, momentumunu da sıfır ölçer.
Newton’un ikinci yasasına göre, bir parçacığın momentumunun değişim hızı, parçacık üzerine etki eden net kuvvetle doğru orantılıdır ve yönü ise bu net kuvvetin yönündedir. Net kuvvetin, momentumdan türetilmesi aşağıdaki gibidir.
Örnek: yine bir model uçak, 1 kg kütleli, 1 s içinde kuzeye doğru sıfır hızdan 1 m/s hızına ivmelensin. Bu ivmelenme için gerekli kuvvet 1 newtondur. Momentumdaki değişim 1 kg•m/s’dir. Kokpitteki pilot için ise momentumda bir değişim yoktur. İvmelenme sırasında pilotun sırtının koltuğa yapışması, bu thrust’a tepki kuvvetine karşı dengelenmedir.
Bir çok-parçacık sisteminin çizgisel momentumu
Kütle ve hız bağıntıları
Çok-parçacık sisteminin çizgisel momentumu, sistem içindeki ayrı ayrı tüm nesnelerin momentalarının vektörel toplamlarına eşittir.Gösterilebilir ki, kütle merkezi çerçevesinde herhangi bir sistemin momentumu sıfırdır. Dahası, bu kütle merkezi çerçevesine göre hızı vkm olan başka bir çerçevedeki momentum basitçe aşağıdaki gibidir:
Kuvvet bağıntısı – Genel hareket denklemleri
Bir çok-parçacıklı sistemin çizgisel momentumu, toplam kütle m ile kütle merkezi hızı vkm’nin çarpımı olarak da tanımlanabilir.Tensörler kullanılarak yapılacak daha genel bir türetim için, bir t anında, V hacmini kaplayan, bir S yüzey alanına sahip, stres vektörü
elde edilir.
Çizgisel momentumun korunumu
Çizgisel momentumun korunumu yasası doğanın temel bir yasası olup, eğer kapalı bir sisteme etkiyen hiçbir dış kuvvet mevcut değilse, o kapalı sistemin momentumunun sabit kalacağını söyler. Bu yasanın sonuçlarından bir tanesi ise; herhangi bir nesneler sisteminin kütle merkezi, sistem dışı bir kuvvete maruz kalmadığı sürece, her zaman aynı bir hız ile hareketini sürdürecektir..Momentumun korunumu, matematiksel bir özellik olan uzayın homojen olmasının bir sonucudur (bir nesnenin uzay içindeki konumu, momentumuna kanonik olarak eşleniktir). O halde momentumun korunduğu bir sistemin içinde fiziksel olarak ne olup bittiği, o sistemin uzaydaki konumunun nerede olduğu ile bir ilgisi bulunmamaktadır.
Analitik mekanikte momentumun korunumu, Lagranjiyenin, ötelemeler altında değişmez kalmasının bir sonucudur. Toplam momentumun hareket sabiti olduğu, Lagranjiyene sonsuz küçük bir öteleme yapılıp, bunu ötelenmemiş Lagranjiyenle eşitlenerek ispatlanabilir. Bu Noether teoreminin özel bir halidir .[4]
Kapalı bir sistem için (eğer dış kuvvetler yoksa) toplam momentumun korunumu aslında, Newton'un birinci hareket yasasıdır. Newton'un üçüncü yasası olan, alt sistemler arasında etkiyen kuvvetlerin büyüklükleri aynı ve yönleri zıttır şeklinde ifade edilen , etkiye tepki yasası ise momentum korunumunun bir sonucudur.
Uzaydaki konum, vektörel bir nicelik olduğundan, konuma kanonik eşlenik olan momentum da vektörel bir niceliktir—bir yöne sahiptir. O halde, bir silah ateşlendiğinde, sistemin (silah ve merminin) toplam momentumu, bu iki cismin momentumlarının vektörel toplamlarıdır. Ateşlemeden hemen öncesinde silah ve merminin duruyor oldukları farzedilirse (ki bu sistemin başlangıç momentumunun sıfır olmasıdır), sistemin son toplam momentumu da sıfır olmalıdır. Sadece iki nesneye sahip kapalı bir sistemde, nesnelerden birindeki momentum değişimi, diğerinkine büyüklük olarak eşit ve yön olarak ters olmalıdır. Matematiksel olarak,
Bu gerçeğin gerekli olduğu, fizikte sık raslanan bir problem, iki parçacığın çarpışmalarıdır. Momentum herzaman korunuyor olacağından, çarpışma öncesi momenta toplamı, çarpışma sonrası momenta toplamına eşit olmalıdır:
İlk hızlardan, son hızların belirlenmesi (ya da tam tersi), çarpışmanın çeşidine bağlıdır. İki çeşit momentum koruyan çarpışma vardır: Kinetik enerjiyi de koruyan esnek çarpışmalar , ve kinetik enerjiyi korumayan esnek olmayan çarpışmalar.
Esnek çarpışmalar
İki bilardo topunun çarpışması, sertliklerinin yüksek olmasından dolayı, “neredeyse” tamamen esnek bir çarpışmaya örnek olarak verilebilir. Tamamen esnek olan çarpışmalar sadece teoride, sertlikleri matematiksel olarak sonsuz olan iki cisim arasında var olabilir. İki topun çarpışması esnasında momentumun korunmasının yanı sıra, çarpışma öncesi kinetik enerjilerin toplamı, çarpışma sonraki toplama eşit olmalıdır:Bir boyutta
Eşit kütleli iki cismin kafa-kafaya çarpışmasında (yani, m1 = m2), son hızlar şöyle verilir
Çoklu boyutlarda
Birden daha üst boyutlardaki, kafa-kafaya olmayan çarpışmalardaki gibi çarpışmalarda, hız vektörü, çarpışma düzlemine dik ve çarpışma düzlemine paralel olmak üzere, iki ortogonal bileşenine ayrılır. Çarpışma düzlemine dik hız bileşenleri değişmeden kalırken, çarpışma düzlemindeki hız , bir boyutlu durumdaki gibi hesaplanabilir. Örneğin, iki-boyutlu bir çarpışmada, momenta x ve y bileşenlerine ayrıştırılabilir. Bundan sonra her bileşeni ayrı ayrı hesaplayıp, sonuçları vektörel olarak birleştirip hesaplayabiliriz. Bu vektörün büyüklüğü, kapalı sistemin son momentumudur.Mükemmel, esnek-olmayan çarpışma
Mükemmel esnek-olmayan çarpışmaya verilen ortak bir örnek, iki kartopunun çarpışıp, akabinde birbirlerine yapışmalarıdır. Bu durumda momentumun korunumu denklemi şöyledir:Tazmin katsayısı
- v1 çarpışmadan sonra, birinci nesnenin son skaler hızı
- v2 çarpışmadan sonra, ikinci nesnenin son skaler hızı
- u1 çarpışmadan önce, birinci nesnenin ilk skaler hızı
- u2 .çarpışmadan önce, ikinci nesnenin ilk skaler hızı.
Esnek-olmayan çarpışmalar, (CR < 1) eşitsizliğine sahiptirler. Mükemmel bir esnek-olmayan çarpışma durumunda, çarpışan cisimlerin kütle merkezlerine göre hızları sıfırdır. Böylece cisimler, çarpışmadan sonra birbirlerine yapışırlar.
Patlamalar
Patlamalar, bir zincirleme reaksiyon sonucunda, potansiyel enerjinin kinetik enerjiye dönüşmesiyle çevrede bulunan materyallerin yer değiştirmesi şeklinde oluşurlar. Patlamalar potansiyel enerjiyi korumaz. Bunun yerine kimyasal, mekanik ya da nükleer biçimlerinde bulunan potansiyel enerjiyi, kinetik enerji, akustik enerji ve elektromagnetik ışınım biçimlerine çevirir.Momentumun çağdaş tanımları
Göreli mekanikte momentum
Göreli mekanikte, korunabilmesi için, momentum şöyle tanımlanmalıdırGöreli momentum, değişmez kütle ile cismin has hızının çarpımı olarak da verilir. Cismin has hızı, cismin, gözlemcinin kendi gözlem çerçevesinde ölçtüğü konumunun, cismin kendi üzerinden geçen zamana göre(yani cismin has zamanına göre) olan değişim hızıdır. Klasik mekaniğin geçerli olduğu bölgede, göreli momentum, Newtonsal momentuma yakınsar: düşük hızlarda, γm0v , yaklaşık olarak m0v Newtonsal momentum ifadesine eşittir.
E göreli enerjisi, m0 kütlesi, p göreli momentumu, ve m = γm0 göreli kütlesinin, grafiksel bir temsili.
Dörtlü vektör formülasyonu
Göreli dörtlü momentum, dörtlü vektörlerin Lorentz ötelemeleri altında değişmez kalmalarından dolayı, Albert Einstein tarafından önerilmiş tir. Dörtlü-momentum P şöyle tanımlanır:Momentum dörtlü vektörünün büyüklüğü || P || , m0c’ye eşittir, çünkü
Genelleştirilmiş momentum
Momentum, öteleme invaryansının Noether yüküdür. Öyle ki, sadece parçacıklar değil, alanlar ve diğer her şey momentuma sahip olabilir. Ancak uzay-zamanın eğri olduğu yerlerde, öteleme invaryansı için hiçbir Noether yükü yoktur.Kuantum mekaniğinde momentum
Kuantum mekaniğinde, momentum, dalga fonksiyonu üzerine etkiyen bir işlemci olarak tanımlanır. Heisenberg belirsizlik ilkesi , bir sistemin aynı anda hem konumunu hem de momentumunu ne kadar hassas olarak belirleyebileceğimizin sınırların tanımlar. Kuantum mekaniğinde, konum ve momentum, eşlenik değişkenlerdir.Konum tabanında tasvir edilen bir parçacığın momentum işlemcisi şöyledir;
Elektromagnetizmada momentum
Elektrik ve magnetik alanlar, durağan ya da zaman içinde değişip değişmediklerine bakılmaksızın, momentum taşırlar. Bir metal küre, silindirsel kapasitör veya mıknatıs bir çubuğun üzerindeki elektrostatik(magnetostatik) alanın P basıncı aşağıdaki gibidir.Işık (görülür, UV, radyo) elektromagnetik bir dalgadır ve böylece momentuma sahiptir. Fotonun kütlesi olmamasına rağmen yine de momentum taşır. Bu özellik güneş yelkeni gibi uygulamalara zemin hazırlar. Dielektrik ortamdaki ışığın momentumunun hesaplanması tartışmalıdır(Bkz Abraham–Minkowski controversy [1]).) Momentum, elektrodinamik bir sistemde korunur(alandaki momentumdan, hareket eden bölümlerin mekanik momentumuna dönüşebilir). Bir alanın momentumunun hesabı, genellikle enerji-momentum tensörü ve belli bir hacim üzerinden integre edilmiş Poynting vektörünün zaman içindeki değişimleri dikkate alınarak yapılır. Bu ise bileşenleri enerji yoğunluğu ve momentum yoğunluğu olan bir tensör alanıdır. Elektromagnetik etkileşmeler söz konusu olduğunda, kanonik momentuma karşılık gelen kuantum mekaniksel momentum işlemcisi
,
elektromagnetik vektör potansiyeli
yüklü parçacığın kütlesi
hızı
yüküdür.
Açısal momentum
Açısal momentum çember şeklinde bir düzlemde dönen bir cismin sahip olduğu bir özelliktir. Momentum gibi sabittir:r : Parçacığın seçilen orijin noktasına göre uzaklık vektörü
p : Parçacığın momentumu
Hiç yorum yok:
Yorum Gönder